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I. Introduction

It has long been recognized that in an economy with local public

goods, differences in public consumption levels among communities will

be capitalized into property values . Building on this nearly self-

evident principle, a number of recent papers have explored subtler

features of the relationship between property values and local fiscal

variables. A striking proposition which emerges from several of these

studies is that by choosing the public good output in a community to

maximize aggregate property value, the local government can generate

a Pareto-ef ficient consumption pattern for its constituents. This

proposition appears to provide a solution to the public sector effi-

ciency problem raised by Samuelson (1954); apparently, all that govern-

ments need do to guarantee optimality is search for a property value

maximum. While these points were made most clearly by Sons telle and

Portney (1978), they emerge also in the analysis of Brueckner (1979b).

Unfortunately, the conclusions of both previous studies are not

definitive because they emerge from models without a traditional hous-

ing market equilibrium. For example. Sons telle and Portney 's analysis

relies heavily on a Rosen-style (1974) housing price function without

characterizing the market equilibrium required to generate such a

function. In Brueckner's analysis, the housing stock is fixed, but
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consideration of market equilibrium is legitimately avoided via the

("open city") assumption that consumer utility levels are exogenous.

By employing a general equilibrium model with a fully specified

housing market, the present paper remedies the incompleteness of earlier

studies and provides the first fully acceptable investigation of the

normative implications of property value maximization. Focusing on a

single closed community, it is shown that if the government levies a

"house tax" (a head tax on each house owner) and chooses the public good

level to maximize property value in a qualified sense spelled out below,

then the resulting equilibrium is Pareto-ef ficient. It is shown that

the same conclusion does not follow when revenue is raised by a property

tax, a consequence of the familiar distortion introduced by such a tax.

Later sections of the paper relate the dicussion to open communities and

the Tiebout hypothesis and cite empirical evidence relating to property

2
value maximization.

2. Property Value Maximization with a House Tax

The analysis will focus on a single closed community with n resi-

dents, each of whom possesses an endowment of the numeraire commodity

X and owns an exogenous share of the fixed land area belonging to the

community. In addition to his consumption of x, each resident consumes

the public good z and housing q. Housing is produced with a constant

returns technology whose inputs are land and the numeraire conmodity x,

while X is the sole input into public production.
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It is necessary first to consider the input choices of the housing

producer. Letting r denote land rent per acre and I and x denote

housing inputs of land and x respectively, the Lagrangean expression

for the producer's cost minimization problem is

x^ + r£ - XCHCx^,£) - Q)

,

(1)

where H is the (constant returns) production fxmction and Q is the

specified level of output. The first-order conditions yield

H,(x^,£) H,(x^/£,1)

-^—r ^—r = r, (2)

E^ix'.l) Hj^(x^£,l)

where the first equality follows from the first degree homogeneity of

the production function. Letting S denote x /£, (2) implies that S is

a function of r, S (r) . Recalling that the Lagrange multiplier X is

marginal (and average) production cost and noting the first-order con-

dition X = 1/H (x ,£), marginal cost may be written as

a(r). (3)
H^(S(r),l)

The next step is to derive the rent for a house of size q which

leaves the producer zero profit after payment of the "house tax" levied

to finance the public good. Letting C(z) denote the (weakly) convex

cost function for the public good, a house tax of C(z)/n levied on the

owner of each dwelling in the community will allow provision of a uni-

form public consumption level of z,~' Letting F denote house rent, zero

profit for the producer requires F - a(r)q - C(z)/n = 0, implying that
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for given r, the required rental payment as a function of q and z may

be written

F(q,z;r) H a(r)q + C(z)/n. C4)

Turning now to the consumer side of the market, it will be assumed

that individual i has the strictly quasi-concave utility function

^j Cx, ,q . ,z) . Since it will be necessary in the following analysis to

treat consumer utility levels explicitly as endogenous variables, let

consumer i enjoy a utility level u,, so that v, (x. ,q, ,z) = u . , This

expression may be inverted to yield x. = x. (q,,z,u,), which gives the

amoxmt of x consumption required to generate utility u, for the consumer

when his housing and public good consumption are q, and z respectively.

No te that 8x^/3q^ = -v^2^^il' ^^i^^^
'^

~"^i3^\l'
^^'^ 3x^/3"^ =

•'"^'^il"

Now the consumer's housing rental payment R must leave an amount of

income sufficient to purchase just enough x to reach utility level u .

That is, R. must satisfy

y^Cr) - \= x^(q^,z,u^), (5)

where y . (r) e w. + r£. is the value of consumer i's endowment (£. and
^i i 1 1

w are i's endowments of land and the numeraire commodity respectively)

Rearrangement yields the consumer's "bid-rent" function

R^(q^,z,u^;r) = y^(r) - x^Cq^,z,u^), (6)

which gives the rental payment consistent with the specified utility

level as a function of house size, public good consumption, and land

rent.
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Recalling the definition of the function x
.

, it follows that

3R. V -(x, (q. ,z,u ),q ,z)

> (7)Sq^ v^j^(x^(qi.z»u^),q^,z)

3R. V (0
T-^ = / X > (8)
3z v.,(»)

3R

In addition, it is easy to see from a diagram that the strict quasi-

concavity of the utility function means that the function x is strictly

convex in q and z and hence that R. is a strictly concave function of

q. and z.

Using the bid-rent function (6), the consumer's choice of an op-

timal house size may be illustrated in a somewhat unconventional

fashion. Recalling that (6) defines a family of bid-rent functions

parameterized by u , it is clear that for fixed z and r, the consumer's

goal is to find a point on the market rent function (4) which lies on

the lowest bid-rent curve (from (9), utility is inversely related to

the level of the bid-rent curve). The solution requires tangency be-

tween a (concave) bid-rent curve and the market rent function, as il-

4
lustrated in Figure 1 (asterisks indicate equilibrium values) . The

equilibrium conditions, which for fixed z and r yield equilibrium values

for both house size and utility, are
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R.(q^,z,u^;r) = a(r)q^ + C(z)/n (10)

^ \„ a(r). (11)

To fully determine the housing market equilibrium, a market clearing

condition must be added to (10) and (11). Given constant returns, the

community's total housing output may be written JlH(x /il,l) = ilH(S(r),l)

Jlh(S(r)), where i is the fixed community land area. Market equilibrium

then requires

Zq. = ih(S(r)). (12)

To explain how the local government chooses z, an expression for

aggregate property value must first be derived. The value of a house

is the price which the property will fetch on the open market once con-

struction is complete. Since a buyer will be willing to offer at most

an amount equal to the rent which the house commands minus the house

tax liability, the value of the house inhabited by individual i is

R- (q,- »z,u ;r) - C(z)/n. Aggregate property value is then

ZK^(q^,z,u^;v) - C(z). (13)

The crucial behavioral assumption of the present analysis is that the

government chooses z to maximize (13) taking r, q., and u , i=l,...,n,

as parametric . These variables are influenced by z as a result of

(10)-(12), but the government, behaving like a perfect competitor,

ignores this dependence in choosing the public good level. The first-

order condition for choice of z is consequently
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9R (q ,z,u ;r)

2
"•

\^ = C (z)

.

(14)

Conditions (1U)-(12), together with (14), determine equilibrium values

Q

for the 2n + 2 variables z, r, q., u
,

, i=l,...,n.

It is useful to translate the equilibrium conditions into more

familiar terms, making use of (7) and (8), First, the variables u

are eliminated from the problem by evaluating the functions x.(q.,z,u,)

and calling the result x., as before. Using (7), (11) then reduces to

v^ (x ,q z)
^^,^ "•

,
= a(r), (15)

v.i(x^,q^,z)

while using (8) , (14) becomes

E
^^

,

^—r- = C' (z) . (16)
v.^ (.X. ,q. ,z) ^

'

il 11

Eq. (16) is, of course, the well-known Samuelson condition, which states

that the sum of the marginal rates of substitution between the public

good and the numeraire equals the marginal cost of the public good. It

is this condition which emerges from competitive property value maxi-

mization by the local government. While (12) needs no simplification,

(b) can be used to substitute for the bid-rent function in (10) to

give

w. + xl. - X. - a(r)q. - C(z)/n = 0. (17)
1 i 1 ^i

(recall w. + r£ . H y^(r)).
1 1 ^ i-

"
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It is easily shown that (15)-(17) and (12) characterize a Pareto-

efficient allocation. The Lagrangean for the Pareto problem is

n
v^(Xj_,q^,z^) - Z 6^(v^(x^,q^,z) - u^)

i=2

- Y(Zw^ - Ix^ - x^ - C(z)) (18)

- e(Zq^ - H(x^,I))

(note that there is no housing land cost to society since the land is

internally owned) . It is easy to see that the first-order conditions

from (18) for choice of x., q , and z reduce to (15) and (16) (recall

that a(r) equals the marginal cost of housing, 1/H (x ,1)). In addi-

tion, summing (17) over i yields Zw. - Zx. - (a(r)Zq. - r£) - C(z) = 0,

which is equivalent (noting a(r)Zq. - rJi = x ) to the second-to-last

constraint in (18) . Given the equivalence of the last constraint and

(12), it follows finally that the equilibrium characterized by (15)-(17)

9
ana (12) satisfies all the necessary conditions for Pareto-optimality.

It is important to realize that the competitive nature of the

local government's property-value-maximizing behavior is responsible

for the efficiency of equilibrium. Were the government to take account

of the influence of z on q., u., and r in maximizing (13), the Samuelson

condition would not emerge and the equilibrium would be inefficient.

The local government therefore cannot generate an efficient equilibrium

by searching for an actual property value maximum; it needs to know the

form of consumer bid-rent functions (and hence the form of utility func-

tions) to pursue the competitive type of property value maximization

which generates an efficient equilibrium. Since the information needed
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to pursue the correct policy is therefore the same as that required to

directly compute a Pareto-optimum, property value maximization is not

an operational method for achieving efficiency. This conclusion clearly

contradicts the view of property value maximization as a practical policy

found in some earlier studies (see especially Sonstelie and Portney)

,

3. The Effect of a Property Tax

Suppose that instead of levying a house tax, the government raises

revenue via a property tax. Letting F denote rent, house value V is

determined by the relationship V = F - tV, where t is the property tax

rate (xV is the property tax liability) . Solving for V yields

V = F/(1+t), and the zero profit condition F - tF/(1-H:) - a(r)q =

(tF/(1+t) is the tax liability) implies that the rental payment re-

quired for zero profit is

F(q,T;r) = (1+T)a(r)q. (19)

Using (19), consumer equilibrium requires

R^(q^,z,u^;r) = (1+T)a(r)q^ (20)

aR (q ,z,u ;r)

: ^ (1+T)a(r), (21)

and the housing market clearing condition is once again

Zq. = Jlh(S(r)). (22)

The government's budget constraint, which relates z and x via aggregate

property value IR./(1+t), is
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^ ZR^(q^,z,u^;r) = C(z). (23)

Under property taxation, the government will choose z and t in a com-

petitive fashion to maximize aggregate property value subject to (23).

The Lagrangean is

-^ j:R^(q^,z,u^;r) - m(.-^ ZR^(q^,z,u^;r) - C(z)). (24)

Differentiating (24) with respect to z and t and combining the first-

order conditions yields the requirement

8R (q ,z,u ;r)

2 ^-, = C (z)

,

(25)

which is the same as (14)

.

Equations (20)- (23) and (25) determine equilibrium values for the

variables z, t, r, q., u., i=l,...,n. Eq. (25) yields the Sarauelson

condition, and combination of (22) and (20) gives back the economy's

aggregate resource constraint. The equilibrium characterized by (20)-

(23) and (25) is not Pareto-efficient, however, because of the distor-

tion introduced by the property tax. From (21) , the marginal rate of

substitution between housing and the numeraire is not equal to the

marginal cost of housing in equilibrium, as required by efficiency, but

instead equals (l+r) times marginal cost. In spite of this distortion

of consumer choice engendered by the property tax, a limited efficiency

result may be stated. In particular, it is easy to see that the equil-

ibrium defined by (20)-(23) and (25) is Pareto-efficient conditional on

the (inefficient) equilibrium housing stock . That is, if the q. are

fiiced at their equilibrium values and a Pareto optimum is characterized
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(see (18)), the necessary conditions will be fulfilled by equilibrium

conditions (20), (22), and (25). Thus, while consumption of z and the

numeraire is non-optimal in general, non-housing consumption is effi-

cient taking as given the (non-optimal) housing stock.

4. Open Communities and the Tiebout Model

While the previous analysis has focused on a single closed com-

munity, an important question is whether competitive property value

maximization in a system of open communities levying house taxes leads

to a Pareto-efficient equilibrium. It is fairly easy to see that the

answer to this question is an unfortunate no. The argument establish-

ing this fact is similar to that used by Brueckner (1979a) to show the

possibility of inefficient inter-community equilibria in a public goods

model without housing consumption where head taxes finance public spend-

ing. In the model, the public good is congested, so that the public

good cost function is C(z,n), C > 0, yielding a head tax of C(z,n)/n.

Certain types of congestion imply the existence of a finite optimal com-

munity size for each taste group, a value of n where the per capita cost

of the (optimally-chosen) public output reaches a minimum. If the

total population of each taste group is fortuitously equal to a multiple

of the optimal community size for that group, then an efficient Tiebout-

style equilibrium of homogeneous optimal-size communities exists.

Brueckner (1979a) shows, however, that when public outputs are chosen

by majority vote, it is possible to construct examples of inefficient

equilibria with heterogeneous communities, even when taste group sizes

are "right" and an efficient Tiebout equilibrium exists.
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A similar arginnent can be made in the present model. Although com:-

petitive property value maximization yields a Pareto-efficient consump-

tion pattern for the current residents of a community, it does not rule

out an inefficient allocation of individuals across communities. For

example, consider an economy with two taste groups where each group is

able to fill exactly one optimal size community. Although a configura-

tion with two homogeneous communities is clearly the optimum optimorum ,

it is possible to construct an example of a globally inefficient equil-

ibrium with two heterogeneous communities, each of which is, however,

internally Pareto-ef ficient as a result of competitive property value

maximization. Such an example is presented in the appendix. Clearly,

internal community efficiency is a necessary but not a sufficient con-

dition for overall efficiency; competitive property value maximization

need not guide the economy to a global optimum.

5. Empirical Evidence

Empirical evidence relating to the present analysis is provided by

Brueckner (iy79b). The empirical model in that study portrays a system

of communities where consumers with identical tastes but differing in-

comes reach exogenously specified utility levels (these are uniform

across communities for a given income group) . Housing stocks are also

viewed as exogenous, as is the matching of consumers to houses, and a

property tax finances public spending. Under these circumstances,

aggregate property value P in a community may be written P = f(Q,Y,z),

where is the vector of house sizes and Y is the vector of consumer in-

come levels. A final assumption is that all communities in the sample
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are inefficient in the same direction in providing the public good.

That is, given their housing stocks and the exogenous consumer utility

levels, all communities simultaneously provide the public good at a

level below or above the relevant property-value-maximizing level

* *
(formally, z < z, holds for all observations k, where z, maximizes

f(Q, ,Y, ,z), or the reverse inequality holds for all k) , Under these

circumstances, it is clear that a regression plane fitted to the data

(with P as the dependent variable) will indicate by the sign of its z

coefficient whether communities operate generally below or above their

property value maxima. Note that instead of yielding an estimate of

the entire hypersurface corresponding to P = f(Q,Y,z), this procedure

12
yields a hyperplane which is approximately "tangent" to the surface.

The empirical results show a negative z coefficient, indicating that

communities operate on the "downhill" (in the z direction) portion of

the property value hypersurface. That is, holding utilities and house

sizes fixed, a decrease in z in a sample community would increase its

aggregate property value. This means that the Samuelson condition is

not satisfied in the sample communities ( Z MRS < C'(z,) holds for
lek

all communities k) , indicating that public good outputs in the sample

13
are inefficient conditional on community housing stocks. What this

means is that holding its housing stock fixed, a lower public good out-

put in a sample community could have allowed some consumer utility levels

to increase. Of course, since local governments have no reason to be-

have like competitive property value maximizers, empirical results

showing real-world inefficiency should not be surprising.
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6, Conclusion

The purpose of this paper has been to precisely delineate the con-

nection between property value maximization and public sector efficiency.

It has been shown that under a house tax regime, competitive property

value maximization (in which the government ignores its influence on the

local economy) leads to a Pareto-efficient equilibrium in a closed com-

munity. Non-competitive property value maximization (where the govern-

ment searches for an actual property value maximum) is, by contrast,

inefficient. The inefficiency of equilibrium when behavior is non-

competitive is of course a familiar result, and its emergence in the

present context seems natural.

The particular kind of competitive government behavior required

for efficiency unfortunately renders property value maximization non-

operational as real-world policy. While the government must view the

community's housing stock and land rent as parametric, it must also

act as if consumer utility levels are fixed. As a result, the govern-

ment needs to know each consumer's utility fianction to pursue the correct

policy. This information, however, facilitates direct computation of a

Pareto-optimum, obviating the need for a separate approach.

Although in light of the previous observations, it might be tempt-

ing to view the efficiency of competitive property value maximization as

nothing more than a mathematical curiosum, it must be remembered that

the analysis underlying this result also has empirical significance.

As was shown in the last section of the paper, regression results re-

lating property values to local public spending can indicate (under
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suitable assumptions) whether or not the local public sector is efficient

in the conditional sense discussed in section 3. Therefore, the analysis

in this paper offers more than purely theoretical illumination.
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Appendix

This appendix provides an example of a globally inefficient two-

community equilibrium in which each community is internally Pareto-

efficient. It is assumed that there are two taste groups whose members

have identical x-endowments w and utility functions v (x.,q, ,2) =

x. + t(q.) + m^(z), with t*,m! > and t",m'' < 0, i=l,2. Also, it is
1 1 i 1 i

assumed that community land areas are equal (communities could be viewed

as equal sized "islands") and that land rent is divided equally among

a community's current residents.

Since the function t does not depend on i, housing consumption in

a given community is the same for all individuals regardless of taste.

Eq. (15) gives

t'(q) = a(r), (Al)

where q is the uniform level of housing consumption. Consumption of x

is also uniform within a community. From (17),

X = w + rT/n - a(r)q - C(z,n)/n, (A2)

where C(z,n) is the cost function for the (congested) public good.

Finally, since housing consiimption is uniform, the market clearing con-

dition (12) becomes

nq = Ih(S(r)). (A3)

Eqs. (Al) and (A3) determine q and r as functions of n and (A2) then

determines x as a function of z and n. Note that the solutions do not
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depend on the relative proportions of the two taste groups in the com-

munity population.

Suppose that n type-one consumers and n„ type-two consumers reside

in a community. Then the Samuelson condition (16), which follows from

competitive property value maximization, requires n m' (z) + n„ml(z) =

C^Cz.n^+n^) or

em]^(z) + (l-6)m^(z) = C^(z,n)/n, (AA)

where n = n^ "*" ^2 ^^'^ ^ ~ "^i/^* Eqs. (A1)-(A4) fully determine a

(Pareto-efficient) community equilibrium for the given group sizes. Note

that setting 9 = 1 or 9 = in (A4) gives the equilibrium for a homo-

geneous type-one or type-two community. It is easy to show that these

homogeneous equilibria maximize the utility of the relevant group sub-

ject to the community resource constraint. That is, (A1)-(A3) and (A4)

with 9=1 are equivalent to the optimality conditions for the problem

max X + t(q) + m (z) subject to nw - nx - x - C(z,n) = and

nq - H(x ,JJ.) =0, with an analogous statement holding for group 2.

Before proceeding to construct the example, it will be useful to

calculate the increase in group I's equilibrium utility level which

follows from an Increase in 9. Differentiating v = w + rJl/n - a(r)q -

C(z,n)/n + t(q) + m (z) with respect to 8, recalling that r and q are

independent of z and hence independent of 9, it follows that

dv

-^ = (m|(z) - C^(z,n)/n) || . (A-5)

Now, using (A4),
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mMz) - m'(z)
02 _ 1 2

em^(z) + (l-e)m^(z) - C^^(z.n)/n

and it follows from C >_ and m'.' < 0, i=l,2, that 3z/3e has the sign

of mJ - m'. Furthermore, it is easy to show that when (A4) holds,

mJ - m' > implies mJ - C /n > and m' - m^ < implies m' - C'/n < 0.

3z
This means -rr- and ml - C./n have the same sign, implying from (A5) that

dv /de > 0. This result is perfectly intuitive: when the proportion

of type-ones in the community rises holding n fixed, type-one tastes

receive more weight in the Samuelson condition (A4) , leading to a higher

type-one utility level. Note that dv /dO > means that for given n,

type-one individuals reach the lowest utility level in a community where

z is chosen to maximize the utility of a type-two consumer (this occurs

when 6=0), with utility increasing monotonically as 9 increases from

zero to one. A similar discussion holds for group 2.

The key to the following example is the dependence of utility on

community size n. Consider the equilibrium type-one utility level in

homogeneous communities of various sizes. This is computed by setting

6=1 and solving (Al)-(A4) for x, q, r, and z as functions of n and

substituting the solutions into the utility function. This gives an

"indirect" utility function which depends only on n: (p (n) . An

analogous procedure yields i|i„(n), the type-two utility level in a homo-

geneous conmunity of size n. The following example assumes that

(? . (n) , i=l,2, are single-peaked functions of n. While this need not

always be the case, it can be guaranteed in the present example by

assuming v.(x,,q.,z) = x.+ q. + z , H(x ,i) = (x ) £ , C(z,n) = z n

and choosing c to be sufficiently smaller than unity.
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Figure 2 shows the curves
<J)^ (n) and <))„(n), with the optimal homo-

geneous community sizes for the groups denoted N^ and N„. The Figure

9 1

also shows curves <J>- (n) and i{)„(n), which are defined as follows:
<i>'3 (n)

gives the type i utility when z is chosen to satisfy type j tastes (for

2
example, ij), (n) is given by solving (A1)-(A4) with 6=0 and substituting

the solutions into the type-one utility function). From the previous

discussion, it is clear that when < 9 < 1, the utility level of a

2
type-one consumer lies between the ^ and <|), curves at the appropriate

14
value of n, with a similar conclusion holding for group 2.

With this background, it is possible to present an example of a

globally inefficient equilibrium. First, suppose that the total popu-

lations of the groups equal N^ and N_ respectively. This means it is

possible to create two optimal-size homogeneous communities, leading to

the highest possible utility levels for the two groups. However, con-

sider a two-community configuration where one community (A) has a homo-

geneous type-one population of P a N, -6 while the other community has

A
popvilation P composed of N„ type- twos and 6 type-ones. Figure 2 shows

that this configuration can be an equilibrium. What is required is that

no individual has an incentive to change communities. In the Figure,

(J)^(N,-6), the utility of a (type-one) resident of community A, equals

the utility he would enjoy by moving to the (efficient) mixed community

B (recall that when < 6 < 1, type-one utility is intermediate between

2
the heights of the <^^ and (j)^ curves). In addition, a type-two resident

of community B reaches a utility level equal to what he would achieve in

I * 15
community A ((^„(N^-6)). Note that in contemplating a move to the

other community, a consumer does not take account of his effect on 6.
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Thls example shows the possibility of a globally inefficient equil-

ibrium where each community is internally Pareto-efficient. Although a

major community reorganization (moving 6 type-ones from B to A) would

increase everyone's utility, no single individual has an incentive to

alter his residence. The example clearly illustrates the proposition

that internal community efficiency is not a sufficient condition for

global optimality.
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Footnotes

*I wish to thank Jon Sonstelie and David Wildasin for comments. Any
errors, however, are my own.

The first empirical evidence on capitalization was provided by
Gates (1969).

2
It should be noted that Edelson (1976) and Wildasin (1979) con-

sider models where individual residents of a community vote for the
public good level which maximizes the value of their own property.
While Edelson was concerned with showing the circumstances under which
voters agree on the optimal public good level, he mentions in passing
(and without proof) that aggregate property value maximization is

Pareto-optimal. Wildasin's discussion, which also yields an efficiency
result, suffers from the same defect as Sonstelie and Portney's: a
Rosen-style housing price function is used without characterization of

the housing market equilibrium which generates it. In another study,
Negishi (1972) shows the efficiency of an extremely restrictive type
of land value maximization in a model based on very special assumptions.
Finally, Starrett (1977) considers the effect of changes in the public
good output on aggregate land rent in a circular city without consider-
ing the normative implications of property value maximization.

3
Although the fact that n does not appear in the public cost func-

tion implies that z is a pure public good, the analysis is no different
when the public good is congested and the cost function is C(z,n),
C„ > 0. This is discussed further below.

4
Note the similarity between Figure 1 and Rosen's (1974) diagrams

depicting hedonic price determination. It is important to realize that
while the above analysis could be couched in conventional supply and
demand terms since housing is a homogeneous commodity in the model,
Rosen's analysis cannot avoid use of a diagram such as Figure 1 since
his commodities are differentiated by quality.

Mathematically, the consumer's optimization problem is to maximize
u. subject to R.(q.,z,u ;r) = a(r)q + C(z)/n. The first-order condi-

tions for this problem reduce to (10) and (11)

.

In equilibrium, of course, value equals production cost a(r)q.

(see (10)). Note that while the discussion so far has implicitly assumed
that producers rent out their completed houses, so that no active market
in houses actually exists, it is easy to see that analysis of an economy
in which producers sell their completed properties to landlords who
rent them to consumers is identical to the above. Note also that if

the analysis had been carried out in a multiperiod model with durable
houses, house value would equal the discounted present value of the
difference between rent and taxes.



The second-order condition is satisfied since the R. are concave

in z and C(z) is convex.

It should be noted that conditions (10)- (14) characterize the
Nash equilibrium of a game where the players are the government, con-
sumers, and producers. In addition to normal competitive behavior in

the housing market, market participants view z as fixed in making con-
sumption and production decisions. Similarly, the government views
the decision variables of housing market participants as fixed in
choosing z.

9 -
If u. is set equal to u, (the equilibrium value of i's utility

from (15)- (17) and (12)) for i=2,...,n, then the maximized value of
individual I's utility from (18) will equal u^ , the equilibrium utility

value. Thus the equilibrium is Pareto-ef ficient; holding n-1 utilities
fixed at their equilibrium values, the equilibrium value of the remain-
ing utility is as high as possible given society's resource constraints.

Letting v.(x.,z) be the utility function and denoting income by y,

the consumer maximizes v (x.,z) subject to y - x - C(z,n)/n, The

first-order conditions are v.„/v = C /n and C„ = C/n. The latter

condition may not be satisfied for any (z,n) if congestion is weak;
infinitely large communities are then optimal.

Note that when communities are open, the local government must
view its community's population as parametric in pursuing competitive
property value maximization,

12
Since data on aggregate property value are not available, median

house value was used as the dependent variable in the regression. Note
that maximizing aggregate property value is approximately the same as

maximizing median house value. For details of the empirical approach,
see Brueckner (1979b).

13
Since the empirical model realistically assumes the existence of

a property tax, housing stocks must be viewed as non-optimal.

14
Note that without the invariance of the equilibrium values of x,

q, and r to the composition of the community population (to 9), it

would not be possible to express utilities simply as functions of n.

Since all that is required is that a type-two individual in B has
no incentive to move to A, the configuration is an equilibrium as long
as the utility of type two individual in B is equal to or greater than
the utility he would achieve in A.
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